Module 11: Gaussian Process Regression DAV-6300-1: Experimental Optimization

David Sweet // 20241121

Review: A/B Test

• Goal: Accept or reject B

. Design:
$$N \ge \left(\frac{2.5\hat{\sigma}_{\delta}}{PS}\right)^2$$

- Measure: Replicate (reduce variance), Randomize (reduce bias)
- Analyze:

Criterion 1: $\delta > 1.6se \ (t > 1.6)$ **Criterion 2**: $\delta > PS$

Review: Thompson sampling

- Allocate observations to arms in proportion to the probability each arm is best
 - $p_{arm} \propto p_{best}$
- Stop when $\max\{p_{\text{best}}\} > 0.95$

Review: Response Surface Methodology

- Surrogate: Model (regression)
 - Maps parameters, x, to measurements, y
- Analogy
 - *E*[*BM*] is to observation *y*
 - as response function, f(x), is to surrogate, y(x)

Key Terms

- Surrogate (again)
- Gaussian Process
- Gaussian Process Regression (GPR)
- Non-parametric
- Aleatoric (measurement) & epistemic (model) uncertainty

Gaussian Process Regression A modern, powerful surrogate

- Recall, RSM uses linear model
 - $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$
 - Engineer decides regressors
 - Engineer fits & inspects model

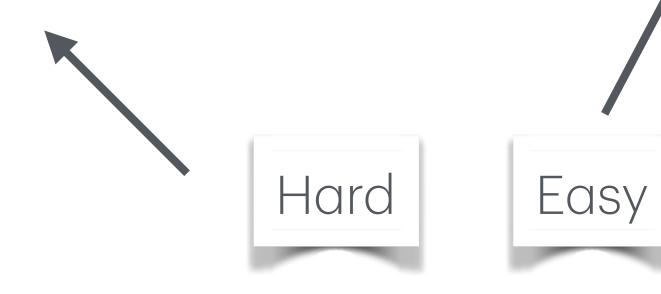
Gaussian Process Regression A modern, powerful surrogate

- Recall, RSM uses linear model
 - $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$
 - Engineer decides regressors
 - Engineer fits & inspects model

- GPR uses non-parametric model
 - "Fancy" KNN
 - No regressors, just data
 - GPR just works
 - GPR used in Bayesian Optimization (BO)

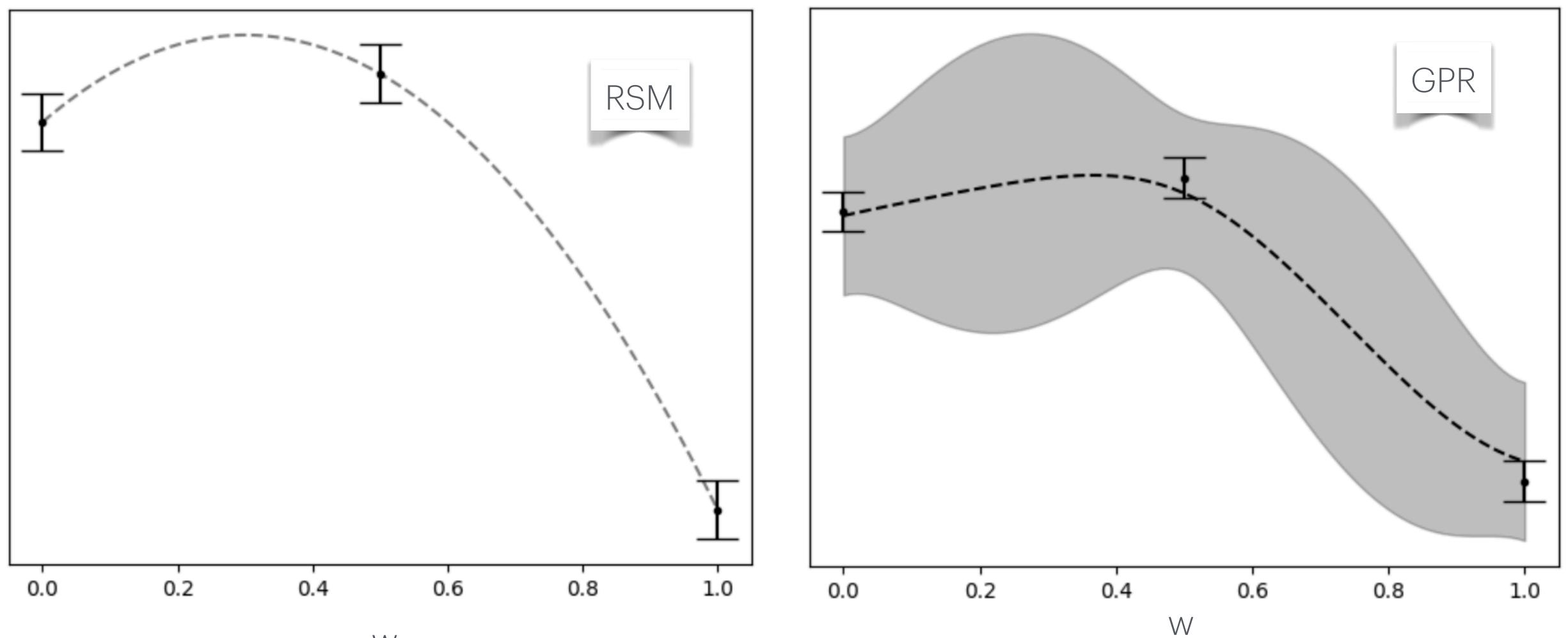
Gaussian Process Regression A modern, powerful surrogate

- RSM
 - Rigid model form: one hump
 - Best for few dimensions
 - Models only $\mu(x)$
 - "Statistics"



- GPR uses non-parametric model
 - Flexible; any shape
 - Fine for any number of dimension
 - Models $\mu(x)$ and se(x)
 - "Machine Learning"

Gaussian Process Regression



GP Model

- RSM
 - $y(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$

•
$$\varepsilon \sim \mathcal{N}(0, se^2)$$

- Same as $y(x) \sim \mathcal{N}(\mu(x), se^2)$
 - $\mu(x) = \beta_0 + \beta_1 x + \beta_2 x^2$

• GPR extends

• $y(x) \sim \mathcal{N}(\mu(x), se^2(\mathbf{x}))$

• *se* now depends on *x*

 $\mu(x)$

- Want $\mu(x)$ as weighted avg. of all y_i 's
- How similar are nearby measurements?

• Nearness:
$$d(x, x') = ||x - x'|| = \sqrt{\sum_{i} (x_i - x'_i)^2}$$

• Similarity: $e^{-d(x,x')^2/(2s^2)}$

RBF/Squared exponential Kernel

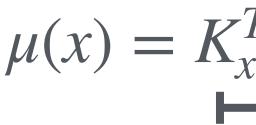
Euclidean distance

$\mu(x)$

- kernel function: $k(x, x') = e^{-d(x, x')^2/(2s^2)}$
- Kernel matrix, all pairs of parameters: $(K_{xx})_{ij} = k(x_i, x_j)$
- Kernel vector, estimate at $x: (K_x)_i = k(x, x_i)$
- **y** is vector, $y_{i'}$ of all measurements
- se_0 is standard error of all y_i

 $\mu(x) = K_x^T (K_{xx} + se_0^2 I)^{-1} \mathbf{y}$

See Appendix C of Experimentation for Engineers



- $\mu(x)$ is weighted avg. of y's
- Weights depend on kernel values, on distances between *x*'s

 $\mu(x) = K_x^T (K_{xx} + se_0^2 I)^{-1} \mathbf{y}$

weights

Se(X)

• se is similar

- se_0^2 is measurement noise
- se_0^2 constant, common to all y's
- se(x) depends only on x_i

Independent of measured BM

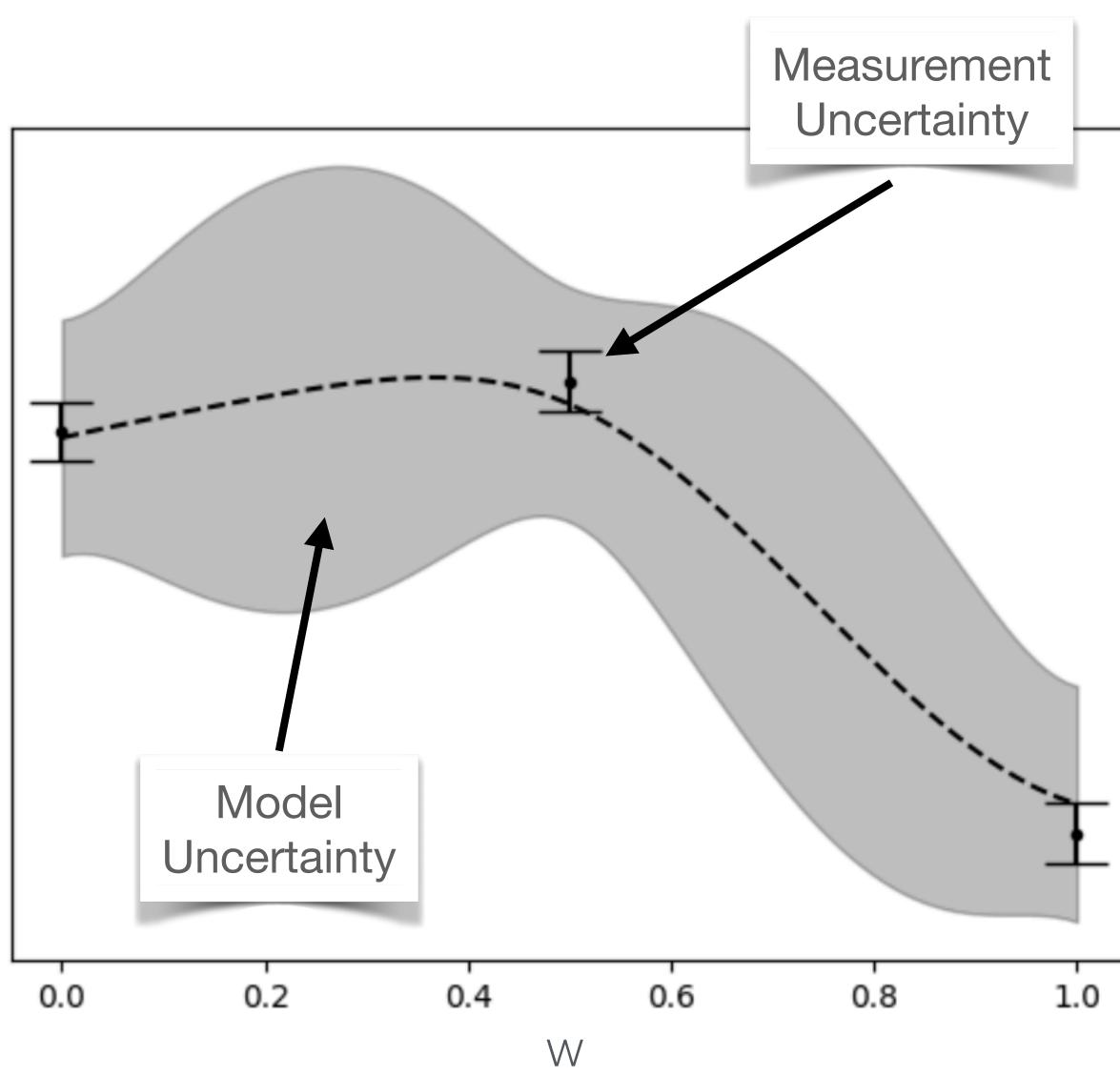
 $se^{2}(x) = 1 - K_{x}^{T}(K_{xx} + se_{0}^{2}I)^{-1}K_{x}$

- se_0^2 is aleatoric uncertainty measurement uncertainty
 - The familiar one
- $K_x^T K_{xx}^{-1} K_x$ is epistemic uncertainty model uncertainty
 - Farther from measurements, greater uncertainty

 $se^{2}(x) = 1 - K_{x}^{T}(K_{xx} + se_{0}^{2}I)^{-1}K_{x}$

Se(x)

- Measurement uncertainty
 - Error bars
 - Decrease by increasing N
- Model uncertainty
 - Gray areas
 - Decrease by measuring a new parameter value



Computation

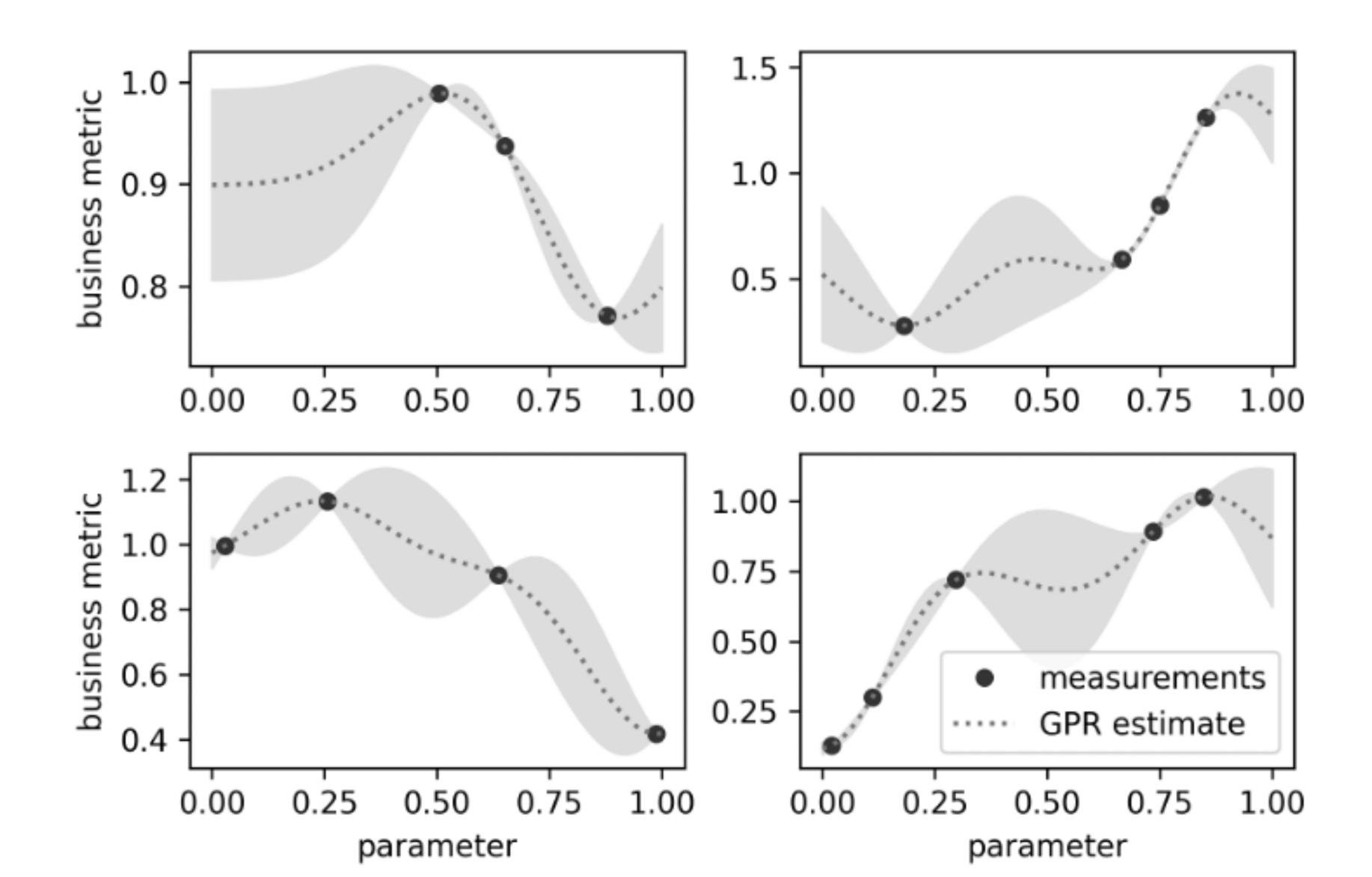
- Uses all $O(N^2)$ distances memory hog
- Inverts K matrix, $O(N^3)$ slow
- N is number of measurements
 - GPR good when N small
 - Experiments try hard to keep N small

larger N ==> more expensive

Kernels

- Kernel function is part of model architecture
- Many kernel functions available
 - Localized, like RBF / Gaussian
 - Periodic
 - Nearness of long strings (molecular discovery)
 - Nearness of images

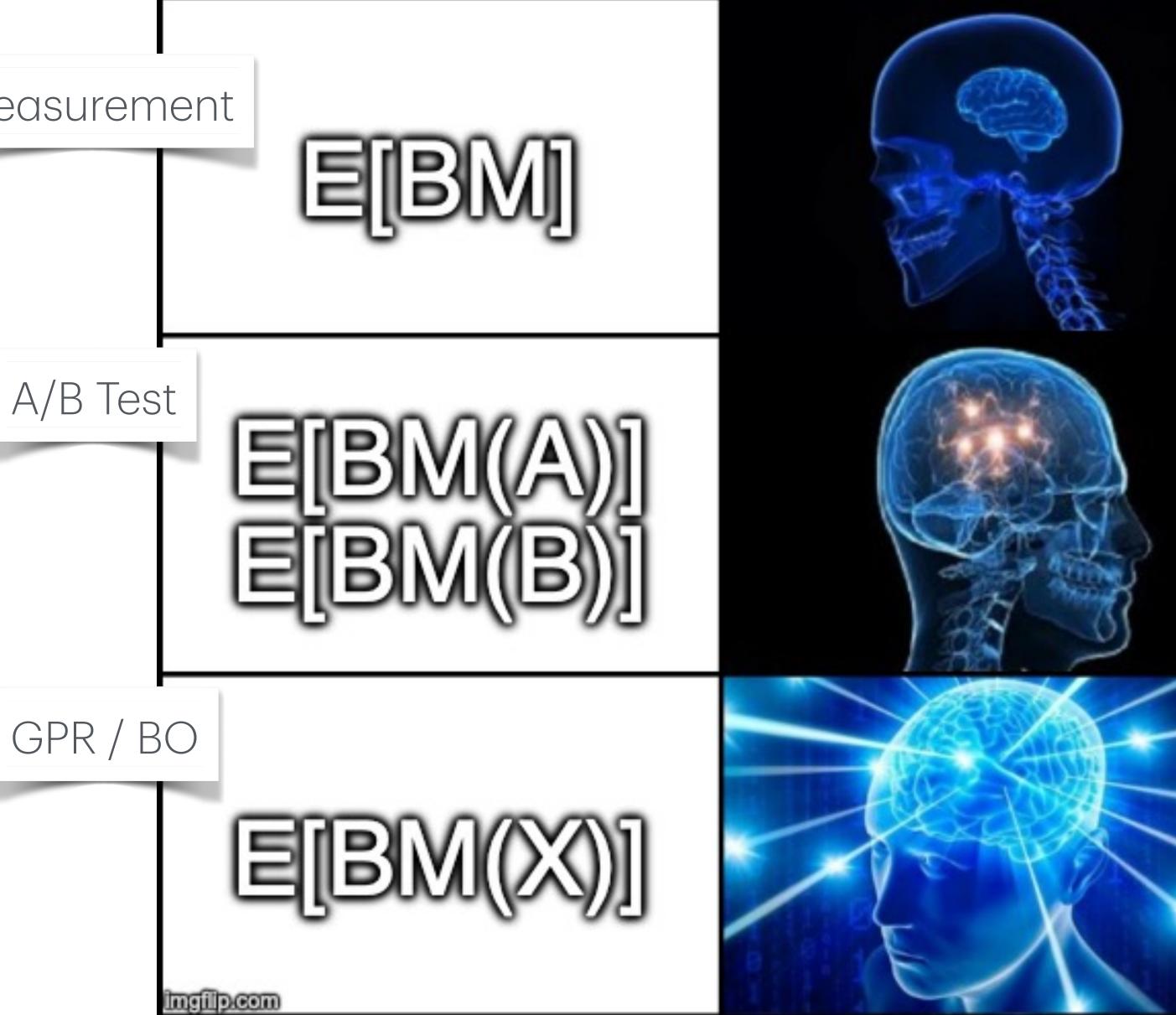
Examples

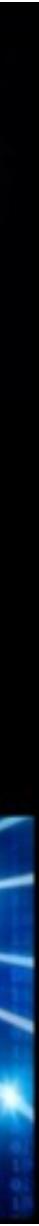


Progression

Measurement

- If *x* is indicator:
 - x = 0 if A
 - x = 1 if B
- ...then GPR models an A/B test





What puts the G in GPR? And how is it a "process"?

- Model each value y(x) as a Gaussian distribution
- Model any collection of $\{y(x)\}$ as a multivariate Gaussian distribution
 - x is continuous, so really an infinite-dimension Gaussian distribution
- First considered as y(t), where t is time. A process is something that changes over time. A Gaussian process is one where y has a Gaussian distribution that changes over time. Ex: a Brownian motion (continuous random walk)
- Change t to x and you have a machine learning tool, Gaussian process regression

Summary

- GPR models $\mu(x)$ and se(x)
- se(x) models both aleatoric (measurement) and epistemic (model) uncertainties
- Non-parametric; no betas, like KNN
 - Reads all measurements for every new estimate
- Slow, but very good for experimentation, where N is small
- GPR used as surrogate in Bayesian optimization