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Review: A/B Test

- Goal: Accept or reject B

2.56,

. Design: N>( o )2

- Measure: Replicate (reduce variance), Randomize (reduce bias)

- Analyze:

Criterion1: 6 > 1.6se (t > 1.6)
Criterion2: 0 > PS



Review: Thompson sampling

. Allocate observations to arms in proportion to the probability each arm is best

* Parm & Ppest

. Stop when max{ppest} > 0.95



ace Methodol

Review:

Response our:

- Surrogate: Model (regression)

- Maps parameters, x, to measurements, y

- Analogy

» E|BM | is to observation 'y

. as response function, f(x), is to surrogate, y(x)

OgY



ey lerms

. Surrogate (again)

+ Gaussian Process

- Gaussian Process Regression (GPR)
- Non-parametric

. Aleatoric (measurement) & epistemic (model) uncertainty



(3ausslan Process Regression

A modern, powertul surrogate

« Recall RSM uses linear model

2
» Y=potPix+pox"+ e
- Engineer decides regressors

- Engineer fits & inspects model



(3ausslan Process Regression

A modern, powertul surrogate

- Recall, RSM uses linear model « GPR uses non-parametric model
e V=4 pix+ Pox* + € + “Fancy” KNN
» Engineer decides regressors + Noregressors, just data
. Engineer fits & inspects model + GPRjust works

- GPR used in Bayesian Optimization (BO)



(3ausslan Process Regression

A modern, powertul surrogate

- RSM « GPR uses non-parametric model
. Rigid model form: one hump . Flexible; any shape
» Best for few dimensions . Fine for any number of dimension
.+ Models only u(x) + Models u(x) and se(x)

. “Statistics” / - “Machine Learning”

Hara Fasy
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(3ausslan Process Regression
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GP Model

« GPR extends

- RSM
c Y(X) = P+ Pix+ Pox” + € - Y(x) ~ N (/4()),S'€2(X))
. e~ N(0,se?) - Se now depends on X

. Same as y(x) ~ N (u(x), se?)

« j(x) = Py + Prx + fox?



p(x)

. Want u(x) as weighted avg. of all y;'s

- How similar are nearby measurements?

Nearness: d(x, x) = ||x — x/|| = Z (x; — xI)* Fuclidean distance
l

\

RBF/Squared exponential
Kernel

. Similarity: e —dxx)(25%)




p(x)

. kernel function: k(x, x’) = o —Aex)1(25%)

. Kernel matrix, all pairs of parameters: (K,,);; = k(x;, x;)

. Kernel vector, estimate at x: (K,); = k(x, x;)
u(x) = KXT(KXX - Segl)_ly

+ 'y is vector, y;, of all measurements

See Appendix C of

. Seq is standard error of all y; |
0 Vi Experimentation for Engineers




p(x)

u(x) = KXT(KXX —- Segl)_ly
—_—

. 1(x) is weighted avg. of y’s weights

- Weights depend on kernel values, on distances between x's



se(x)

» se is similar
se*(x) =1 — KI(K_, + se;) 'K,

o Seg IS Mmeasurement noise

: Seg constant, common to all y’s

. se(x) depends only on x;
Independent of measured BM




se(x)

se*(x) =1 - KI(K_, + sef)'K,
: Seg IS aleatoric uncertainty — measurement uncertainty
- The familiar one

T —11 - . . . .
- K, K, K_is epistemic uncertainty — model uncertainty

- Farther from measurements, greater uncertainty



se(x)
Measurement

Uncertainty —
P——

« Measurement uncertainty

e FError bars

« Decrease by increasing N
« Model uncertainty
« (ray areas

« Decrease by measuring a new Model
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Computation

. Uses all O(N?) distances — memory hog
. Inverts K matrix, O(N?) — slow
+ N is number of measurements

» GPR good when N small

. Experiments try hard to keep /N small
larger N ==> more expensive

——————




{ernels

- Kernel function is part of model architecture

- Many kernel functions available

» Localized, like RBF / Gaussian
.+ Periodic
- Nearness of long strings (molecular discovery)

- Nearness of images



~xamples
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Progression

Measurement

— 1 EBM

e |f xisindicator:

= Oif A A/B Test

e x=1IifB
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GPR / BO 1‘.%
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e ..then GPR models an A/B test




What puts the G in GPR?

And how Is it a ‘process’™?

.+ Model each value y(x) as a Gaussian distribution

. Model any collection of {y(x)} as a multivariate Gaussian distribution

. X iS continuous, so really an infinite-dimension Gaussian distribution

. First considered as y(#), where t is time. A process is something that changes over time. A
Gaussian process is one where y has a Gaussian distribution that changes over time. Ex: o
Brownian motion (continuous random walk)

- Change t to x and you have a machine learning tool, Gaussian process regression



Summary

+ GPR models u(x) and se(x)

. se(x) models both aleatoric (measurement) and epistemic (model) uncertainties

- Non-parametric; no betas, like KNN

- Reads all measurements for every new estimate

. Slow, but very good for experimentation, where N is small

- GPR used as surrogate in Bayesian optimization



